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Overview of Our Research
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• Overall Objective: Quantitative characterization of local 
properties of structure geometry, topology, and scale

• Specific Aims: To go beyond material content measures
– Quantitative characterization of architecture and 

topology
– Geometric and topologic separation and classification 

of structures
– Relationship among structural properties, disease, 

intervention and genotypes



Outline
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• Skeletonization

– Fuzzy Skeletonization

• Applications of Digital Topology and Geometry in 
Object Characterization
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• Skeletonization

• Applications of Digital Topology and Geometry in 
Object Characterization



Principle of Skeletonization
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• Object: A closed and bounded subset of Rn

• Skeleton: Loci of the centers of maximal 
included balls

• Maximal Included Ball: A ball included in the 
object that cannot be cannot be fully included 
by another ball inside the object



Basic Advantages of Skeletonization
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• Dimensionality Reduction: Reduces the 
dimension of an object under consideration 
– A 2D object is reduced to a set of 1D curves

– A 3D object is reduced to a set of 2D surfaces and 1D 
curve

• A Compact yet Sufficient Representation:
Useful in many low- as well as high-level image 
related tasks including object representation, 
retrieval, manipulation, matching, registration, 
tracking, recognition, compression etc



Basic Processes for Skeletonization
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• Blum’s Grassfire Transform

• Maximal Included Balls

• Enclosed Touching Balls



Blum’s Grassfire Propagation
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• Blum’s grassfire transform is 
defined by fire propagation on a 
grass field, where the field 
resembles a binary object
– grassfire is simultaneously initiated 

at all boundary points 

– grassfire propagates inwardly at a 
uniform speed

– the skeleton is defined as the set 
of quench points where two or 
more opposite fire fronts meet

fire-
fronts 
at time

object boundary

t0
t1
t2
t3

lines along 
which fire 
fronts meet



Maximal Included Balls
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• The skeleton of an object is defined as the loci 
of the centers of maximal included balls

included balls

non-included balls

object 
boundary

maximal 
included balls

skeleton

center



Enclosed Touching Balls
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• The skeleton of an object is defined as the loci 
of the centers of enclosed balls touching the 
object boundary at two or more disjoint 
locations

object
boundary

object
boundary

skeleton

touching 
point

touching 
point



Skeletonization of Digital Objects
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• Despite the long and rich tradition of computing skeletons of digital 
objects from the 1960s onward we are NOT AGREED on definitions, 
notations or evaluation process

• Intuitively, a skeleton should ideally have the following properties 

– It should have the same topology as the object, i.e., the same number of 
components, holes (and tunnels)

– It should be thin

– It should be centered within the object

– It should preserve the geometric features of the objects

– It should allow complete recovery of the original object



Different Approaches of Skeletonization
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• The three basic processes of skeletonization are equivalent in a 
continuous space

• However, these processes generates different results for digital 
objects

• Skeletonization algorithms may be classified into three major 
categories based on their computational strategies and the 
underlying object representation

– Geometric Approaches

– Curve Propagation Approaches

– Digital Approaches 



Geometric Approaches
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• The object boundary is represented by discrete sets of 
points in continuous space

– point-clouds 

– polygonal (polyhedral) representations 

• Algorithms are based on the Voronoi diagram or other 
continuous geometric approaches;

• Mostly, these algorithms use Voronoi edges (Voronoi 
planes) to locate the symmetry structures or the 
skeleton of an object



Voronoi Skeletonization
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• The original object in the 
continuous space

• A polygonal representation by 
sampling vertex points on the 
object boundary

• The Voronoi diagram of sampled 
vertices is computed

• The Voronoi skeleton consist of 
the part of the Voronoi diagram 
that intersects the discrete object

• Skeletal segments “deep” inside 
the object consist of all segments 
that do not touch the boundary.



Curve Propagation Approaches
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• The object boundary is represented by a continuous 
curve or a digital approximation of a continuous curve

• Algorithms are based on the principle of continuous 
curve evolution of the object boundary

• The symmetry structures or the skeleton are formed at 
singularity locations, specifically, at collision points of 
evolving curves.



Results: Curve Propagation Approaches
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Digital Approaches
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• The object is represented by a set of pixels (voxels) in a 
digital space

• Algorithms use the principle of digital morphological 
erosion or the location of singularities on a digital 
distance transform (DT) field to locate skeletal 
structures

• Often, such algorithms require explicit criteria for 
topology preservation.



Results: Digital Approaches
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Outline
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• Skeletonization

– Fuzzy Skeletonization

• Applications of Digital Topology and Geometry in 
Object Characterization



Principle of Fuzzy Skeletonization
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• Fuzzy Object: A membership value is assigned at each voxel

• The membership value is interpreted as the fraction of object 
occupancy in a given voxel or local material density

• Fuzzy Grassfire Propagation

– grassfire is simultaneously initiated at the boundary of the support of a 
fuzzy object

– the speed of fire-front at at given voxel is inversely proportion to its 
material density, i.e., membership value

– grassfire stops at quench voxels when its natural speed of propagation 
is interrupted by colliding impulse from opposing fire-fronts



Outline of the Algorithm
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• Primary skeletonization

‒ Locate fuzzy quench voxels in the decreasing order of FDT values and filter 
those using local shape factor

‒ Sequentially remove simple points that are not necessary for topology 
preservation in the increasing order of FDT values

• Final skeletonization

‒ Convert  two-voxel thick structures into single-voxel structures 

‒ Remove voxels with conflicting topological and geometric properties

• Skeleton pruning

‒ Compute global shape factor to detect spurious branches

‒ Delete spurious branches



Simple Points: Topology Preservation
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Theorem: A point p is a 3-D simple point if and only if it satisfies 
the following four conditions:

• p has a black 26-neighbor

• p has a white 6-neighbore

• The set of black 26-neighbors of p is26-connected

• The set of white 6-neighbors of p is 6-connected in the set of 
white 18-neighbors of p



Simple Points: Examples
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✔

✗ ✗✗

✗✔



Fuzzy Quench Voxels
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• During fuzzy grassfire propagation, the speed of a fire-front at a 
given voxel equates to the inverse of local material density

• Fuzzy distance transform defines the time when the fire-front 
reaches at a given voxel 

• This process is violated only at quench points where the 
propagation is interrupted by colliding impulse from opposite 
fire-fronts



How to Define a Quench Voxel

b2

a2
a1

p2

b1

p1



Definition of Quench Voxels

• A voxel p is a fuzzy quench voxel† in a fuzzy object if an only if 
the following inequality holds for every neighbor q of p

• Fuzzy quench voxel is equivalent to center of maximal ball for 
binary digital objects



Examples
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Examples
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Collision Impact at Quench Voxels
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• At a quench voxel, the natural speed of fire-front 
propagation is interrupted by colliding impulse from 
opposite fire-fronts

• Collision Impact is defined as the measure of this 
“degree of colliding impulse”

• Collision impact determines the significance of 
individual quench voxels



Filtering Quench Voxels ⇒ Axial Voxels
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• Too many spurious quench voxels

Support of the 
fuzzy object

An image slice of 
the fuzzy object

All quench 
voxels

Collision 
Impact

0

1



Surface and Curve Quench Voxels
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• Surface Quench Voxels
– two opposite fire fronts meet

• Curve Quench Voxels
– fire fronts meet from all 

directions on a plane



Filtering Quench Voxels
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• Define a suitable support mask that fits the geometric type of 
the quench voxel to consider

• Determine the significance in terms of collision impact over 
the support mask

p p

‒ compute minimum collision impact over the support mask 
or
‒ compute the average collision impact over the support mask

Support mask for a 
surface quench 
voxel

Overall significance



Filtered Axial Voxels
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Support of the 
fuzzy object

All quench 
voxels

Filtered axial 
voxels



Skeletal Pruning
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• Compute global shape factor of each branch by adding collision 
impact values of individual voxels  and prune spurious branches



A Few Examples
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A Few Examples
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Evaluation
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• Ground truth: High resolution 3-D binary 
objects with known skeletons

• Test phantoms: Down-sampling binary 
objects and addition of white Gaussian noise 
to generate fuzzy objects

low noise/blur medium noise/blur high noise/blur



Results
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• Skeletons at low, medium, and high noise/blur

• Fuzzy skeletonization errors in voxel unit

Downsampling No noise SNR 24 SNR 12 SNR 6
3×3×3 0.49 0.52 0.54 0.58
4×4×4 0.52 0.53 0.54 0.58
5×5×5 0.57 0.58 0.59 0.60



Outline
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• Fuzzy Skeletonization

• Applications of Digital Topology and Geometry in 
Object Characterization



• Trabecular bone: network of 
interconnected plates and rods

• Wolff’s law (1892): bone 
grows/remodels in response to 
the applied stresses 

• Osteoporosis: low bone 
mineral density and 
architectural deterioration

• At risk in USA:  >40 million
• US health care cost: ~$17B/Y

Bone Morphology & Osteoporosis

Cortical 
bone

Trabecula
r bone
Trabecular 
bone

Cortical 
bone

Need improved imaging methods 
for monitoring bone quality



Bone Mineral Density (BMD) & Architecture

• Meta analysis
• N=38 (1985-2000)
• Various parameters of “strength”
• Mean r2 = 0.64±0.17
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How Predictive is BMD of the Bone’s Mechanical Behavior?

Quantifying Architecture via Bone Biopsy

• Iliac crest or rib
• Painful, risky, and limited retests
• Not suitable for controls or time-series 

analysis

A large number of clinical studies confirm the role of 
bone architecture to determine bone strength 



Distal tibia

MDCT Offers an Opportunity for  Virtual Bone Biopsy

Topology, Scale, 
Orientation

Challenges
• Reduced resolution
• Limited signal-to-noise ratio 

Virtual core

• Analogous to bone biopsy
• Virtual core is isolated from 

3D image data sets.
• Core is subjected to analysis

Features

Needs: Improved Morphometric 
Approaches



Topology of Trabecular Networks

SMI µ (∂BS/∂r)

r

Structure-Model Index (SMI)

BS

SMI=relative 
change in 

surface area 
upon radial 
expansion

calcaneus

SMI = 2.3 SMI = 1.1

Hildebrand et al, J Bone Miner Res, 1999

3D Euler Poincaré Formula
N(3) = objects - tunnels + cavities 

= nodes - edges + faces

Connectivity Index = 1-N(3)

Topological analysis of line 
skeletonized structure

# objects: 1 
# tunnels: 1 
# cavities: 0 

# nodes: 17
# edges: 19 
# faces: 2

N(3) = 0



Digital Topological Analysis

Theory: Saha et al., PR’94, IEEE PAMI’94, CVIU’96, PR’96 
Application: Saha, Gomberg & Wehrli, Int J Im Sci Tech’00

• Topological class (curve, surface 
junctions) at any location may be 
unambiguously determined from the 
topological numbers (#objects (ξ), 
#tunnels (η), and #cavities (δ)) 

• Edge: ξ = 1; η = 0; δ = 0;
• Curve Interior: ξ = 2; η = 0; δ = 0;
• Surface Interior: ξ = 1; η = 1; δ = 0
• Curve-Curve junction: ξ > 2; η = 0; δ = 0
• Surface-Curve junction: ξ > 1; η ≥ 1; δ = 0



Digital Topological Analysis

• Identifies plates/rods and other topological 
entities

• Able to distinguish between fracture/ non-
fracture groups via in vivo MRI

• Being used by several leading research groups 

Surface = plate
Rod = curve

Junction

Age and disease-related 
topological changes58.1 15.7 9.8 3.5

Surface/Curve(Plate/Rod) Ratio

young adult osteoporotic
old age

plate-like rod-like
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Measures TB thickness/Spacing at In Vivo
Resolution using Fuzzy Distance Transform
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98x98x300 µm3

Saha, & Wehrli, IEEE TMI, 23, 2004 

In vivo evidence of Dexamethasone on trabecular bone thickness

Treatment effect is not visually apparent! 



Recent Works: Volumetric Topological Analysis

• Quantify trabecular bone architecture via clinical CT imaging
• Plateness and rodness on the continuum between perfect plates and 

perfect rods
• Local trabecular bone width in the unit of microns

plates

rods
VTA

Saha et al. IEEE Med Imag’10

DTA



How?



CT Imaging
• 128 slice SOMATOM Definition 

Siemens Flash scanner
• 120 kV, 200 mAs, pitch: 1.0
• nominal collimation: 16x0.3mm
• scan length: 10 cm
• slice thickness: 300 µm
• total effective dose 

equivalent:17 mrem ≈ 20 days of 
environmental radiation

Axial Sagittal

Scan1 Scan2 Scan3 µCT



High Intra- and Inter-Modality Reproducibility
Three repeat CT scans µCT scan

Repeat CT scan ICC: 0.97

Color-coded results of volumetric topological analysis

Linear correlation CT vs. µCT  R2 =0.93



VTA Measure for TB with Distinctively Different Strengths

Modulus: 1.5 GPa
BMD: 1.20 gm/cm3

SWVTA: 340 µm
SCRVTA: 0.26

Modulus: 2.2 GPa
BMD: 1.27 gm/cm3

SWVTA: 385 µm
SCRVTA: 0.38

Modulus: 3.3 GPa
BMD: 1.31 gm/cm3

SWVTA: 464 µm
SCRVTA: 0.58

8% reduction in BMD 
reduced bone strength 
to half and manifest a 
50% alteration in 
micro-architecture



Ability To Predict Mechanical Properties

Bone mass distribution at different plate 
width: a new class of informationHigh predictability of experimental 

biomechanical properties.



Bone Characterization in Different Human Groups

• Age group: 18 to 23 years

• Control Group: Iowa Bone Development Study core of healthy 
normal (N = 102; 49 males)

• Group 1: Athletes (N = 11; 6 males) 

• Group 2: Patients on Selective Serotonin Reuptake Inhibitor (N 
= 12; 6 males)

• Group 3: Patients with cystic fibrosis (N = 12; 6 males)

• Group 4: Patients with anorexia nervosa (N = 4; 4 females)



Study on Patients with SSRI treatment

Average differences of bone measures in athlete (N=10), cystic fibrosis (N=11),
selective serotonin reuptake inhibitor (N=12), and anorexia nervosa (N=4) groups as
compared to age-sex-BMI-similar healthy controls from the Iowa Bone Development
Study (N=102). Age-sex-height matching was used for the anorexia nervosa group.



Bone Characterization in Different Human Groups
(Qualitative Illustration)



Structural Differences in a Fracture 
vs Non-Fracture Group

• Nineteen subjects with chronic obstructive pulmonary disease 

• age: 71.3 ± 8.3 years; BMI: 27.1 ± 4.1

• male: 10; female 9

• 9 subjects with at least one vertebral fracture)

9/13/2017 56

Table 1. Mean±SD of MDCT bone structural measures between fracture () and non-fracture () groups
of patients with COPD and the difference (%) between the two groups.

Groups CB Th(µm) CB Poro TB vBMD(mg/cc) TB PW(µm) TB Sp(µm) TB Th(µm)

Fracture 1826±345 0.24±0.09 1270±13 916±119 508±102 121±6

Non-fracture 2061±611 0.17±0.04 1287±16 1027±218 494±155 128±12

Difference 12.1% 32.1% 1.3% 11.5% 2.7% 5.9%



Structural Differences in a Fracture vs Non-
Fracture Group

9/13/2017 57

MDCT-derived TB rod / plate classification for a COPD male without (a) and with (b) at 
least one vertebral fracture. The subject without vertebral fracture has ~50% more TB 
plates (green) as compared to the subject with at least one vertebral fracture. The 
difference in TB volumetric BMD between the two subjects is only 3.5%.



Conclusions

• Digital topology and geometry play important roles in medical 
image processing 

– solves several classical problems of medical imaging

– expands the scope of target information 

– provides a strong theoretical foundation to a process enhancing its 
stability, fidelity, and efficiency

• Advanced quantitative characterization of bone micro-architecture 
are suited for medical imaging research and clinical studies.

• Multi-detector CT is a potential imaging modality for in vivo 
assessment of human trabecular bone micro-architecture
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