Theory of Object Class Uncertainty and its Application

Punam Kumar Saha Professor Departments of ECE and Radiology University of Iowa pksaha@engineering.uiowa.edu

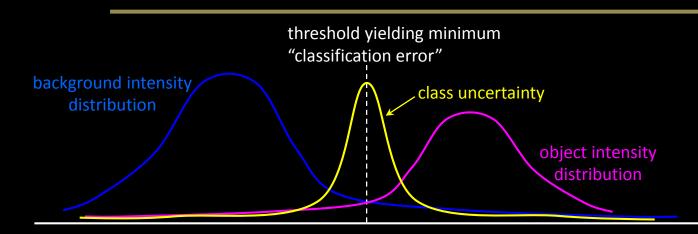
References

- [1] P. K. Saha and J. K. Udupa, "Optimum image thresholding via class uncertainty and region homogeneity," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 689-706, 2001.
- [2] P. K. Saha, B. Das, and F. W. Wehrli, "An object class-uncertainty induced adaptive force and its application to a new hybrid snake," Pattern Recognition, vol. 40, pp. 2656-2671, 2007.
- [3] Y. Liu, G. Liang, and P. K. Saha, "A new multi-object image thresholding method based on correlation between object class uncertainty and intensity gradient," Medical physics, vol. 39, pp. 514-532, 2012.

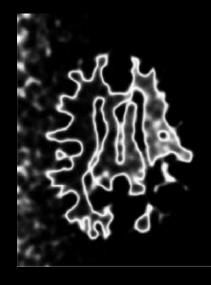
Outline

- Theory Of Object Class Uncertainty
- Applications To Optimum Thresholding
- Applications To Snake

Object Class Uncertainty



Postulate. In an image with fuzzy boundaries, at optimum partitioning of object classes, voxels with high class uncertainty appear in the vicinity of object boundaries.



Gray-scale image

Class uncertainty image at optimum thresholding

• Saha, Udupa, "Optimum image thresholding via class uncertainty and region homogeneity," IEEE Trans Patt Anal Mach Intell, 23: 689-706, 2001

Computation of Object Class Uncertainty

A *priori* probability an object pixel having intensity g $p_0(g) = P(f(c) = g \mid c \in F_0),$ where P represents "probability," and F_0 represents the true object class

A *priori* probability a background pixel having intensity g $p_B(g) = P(f(c) = g \mid c \in F_B),$

where F_B represents the true object class

 θ : A priori probability of any pixel belonging to object

p(g): A priori probability of any pixel having intensity g $p(g) = \theta p_0(g) + (1 - \theta)p_B(g).$

Computation of Object Class Uncertainty

A posteriori probability:

$$P(c \in F_0 | f(c) = g) = \frac{\theta p_0(g)}{p(g)}$$
$$P(c \in F_B | f(c) = g) = \frac{(1 - \theta)p_B(g)}{p(g)}$$

h(g): "object class uncertainty" at intensity g

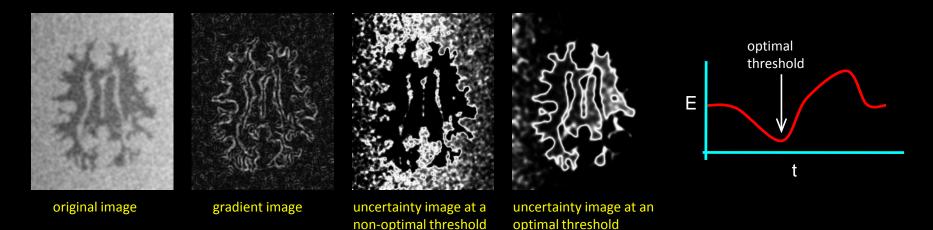
$$h(g) = -\frac{\theta p_0(g)}{p(g)} \log \frac{\theta p_0(g)}{p(g)} - \frac{(1-\theta)p_B(g)}{p(g)} \log \frac{(1-\theta)p_B(g)}{p(g)}$$

Optimum Thresholding

Postulate. In an image with fuzzy boundaries, at optimum partitioning of object classes, voxels with high class uncertainty appear in the vicinity of object boundaries.

$$E(t) = \sum_{c \in C} H_t(f(c)) (1 - \Delta_{\text{rank}}(c)) + (1 - H_t(f(c))) \Delta_{\text{rank}}(c),$$

 H_t is the uncertainty map at a threshold t and Δ_{rank} is a rank-normalized gradient operator



A theory to combine information theoretic measures with image gradient features

• Saha, Udupa, "Optimum image thresholding via class uncertainty and region homogeneity," IEEE Trans Patt Anal Mach Intell, 23: 689-706, 2001

Rank-Normalized Gradient

- DoG measures are sensitive to the standard deviation parameter of the normalizing Gaussian function
- Rank-based normalization of the gradient parameter
 - A parameter-free approach of normalization

$$\Delta_{\mathrm{rank}} = \frac{LC(\Delta(c))}{LC(\Delta_{\mathrm{max}})},$$

where

- Δ is the intensity gradient operator
- $LC(x) = \sum_{y \le x} L(y)$, and L(y) is the histogram count for the intensity gradient value y

[•] Saha, Udupa, "Optimum image thresholding via class uncertainty and region homogeneity," IEEE Trans Patt Anal Mach Intell, 23: 689-706, 2001

Optimum Thresholding Algorithm

Principle. Minimization of Uncertainty Homogeneity Energy (MHUE) E(t)

 $t_{opt} = \arg\min_{t} E(t)$

An efficient computation of the Energy function E(t)

$$E(t) = \sum_{c \in C} H_t(f(c)) (1 - \Delta_{\text{rank}}(c)) + (1 - H_t(f(c))) \Delta_{\text{rank}}(c)$$

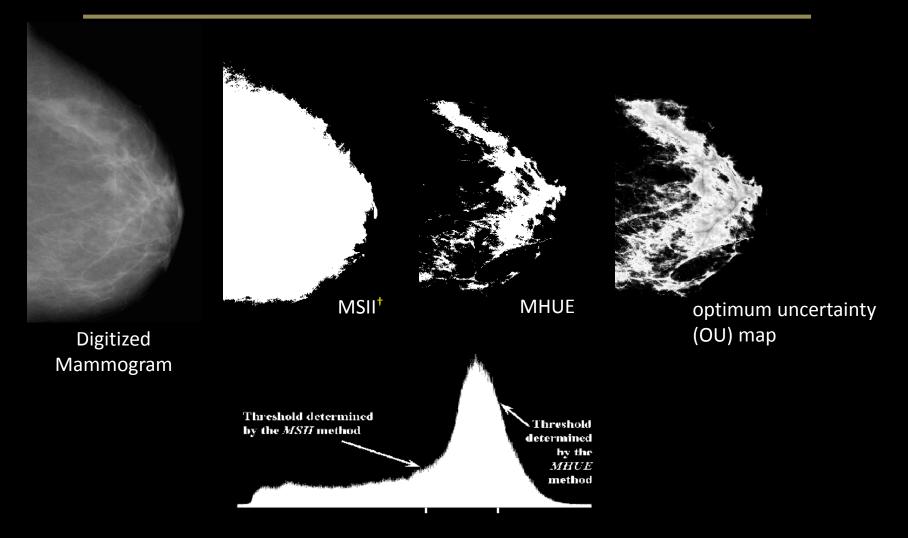
 \forall intensity value *i*,

 $X(i) = \sum_{c \in C \mid f(c)=i} 1 - \Delta_{\text{rank}},$ $Y(i) = \sum_{c \in C \mid f(c)=i} \Delta_{\text{rank}},$ Efficient formulation of E(t) $E(t) = \sum_{i} H_t(i)X(i) + (1 - H_t(i))Y(i)$

Note: Number of possible intensity values in an image is far less than the number of pixels/voxels in the image

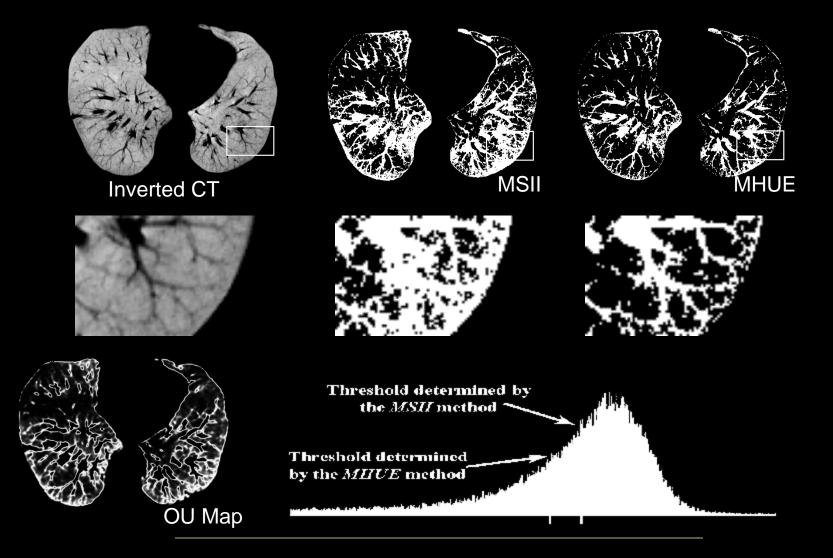
• Saha, Udupa, "Optimum image thresholding via class uncertainty and region homogeneity," IEEE Trans Patt Anal Mach Intell, 23: 689-706, 2001

Results

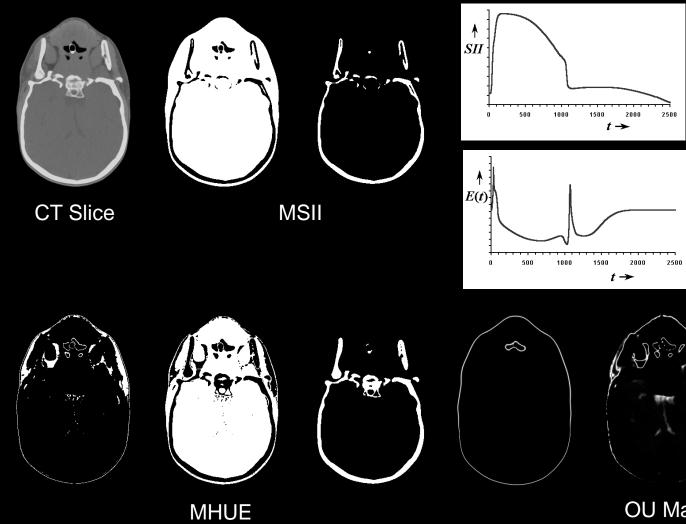


⁺Leung, Lam, "Maximum segmented image information thresholding," Graph Mod Imag Proc, **60**: 57-76, 1998

Results

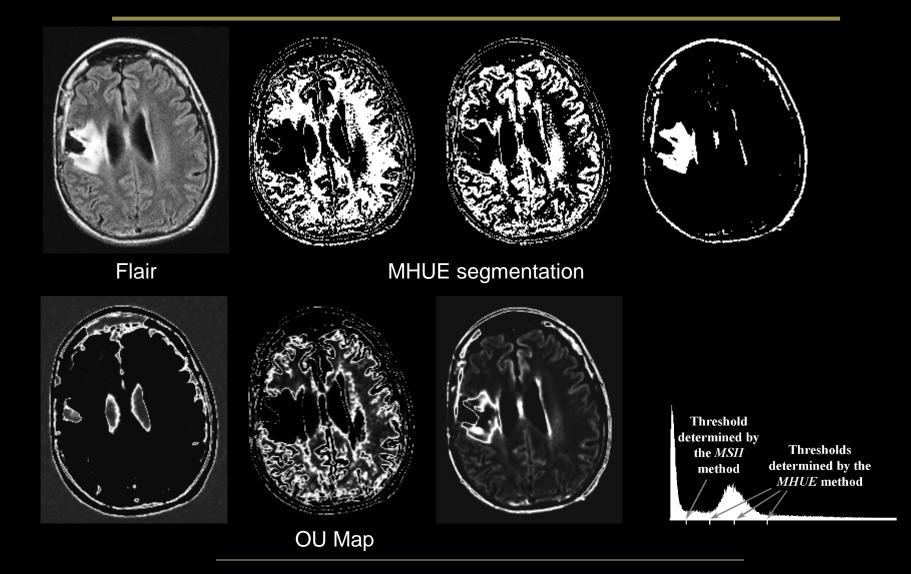


Multiple Object Segmentation

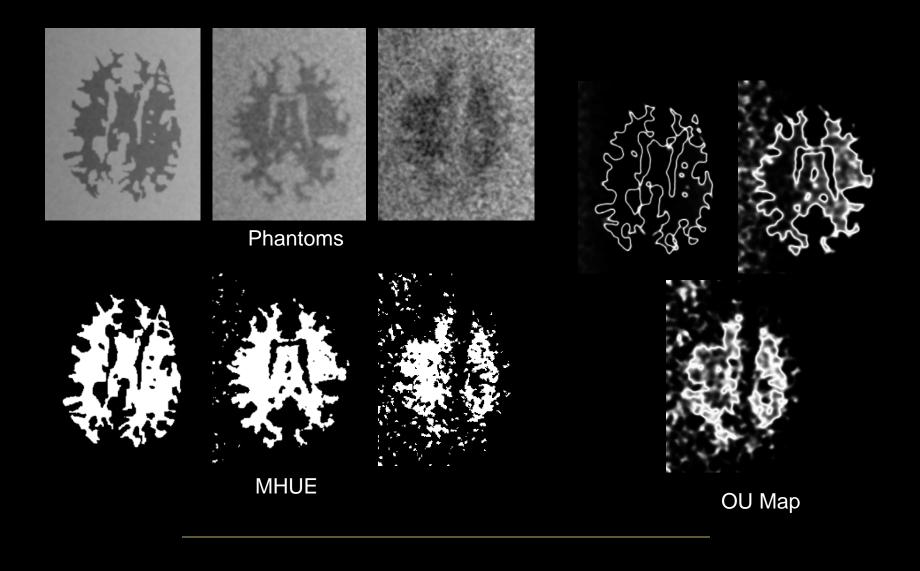


OU Map

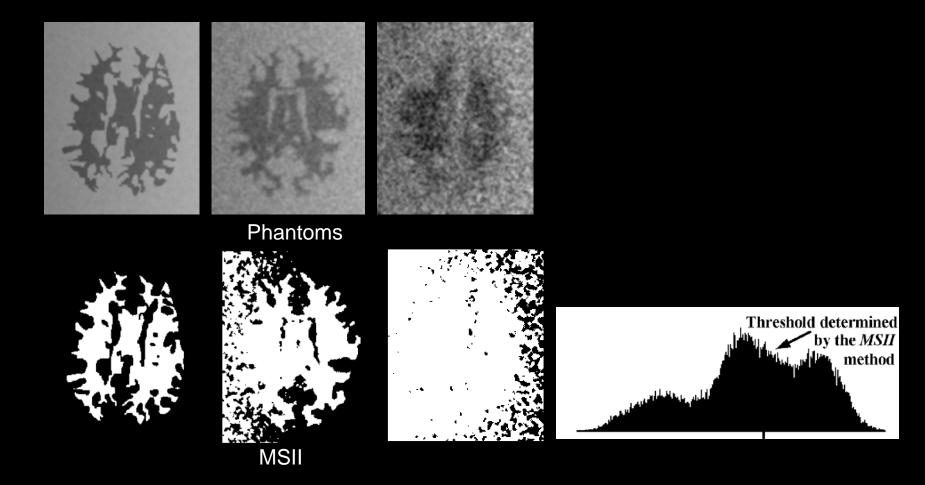
Application on MR Slice Data



Phantom Experiment



Phantom Experiment



Application of Object Class Uncertainty to Snake

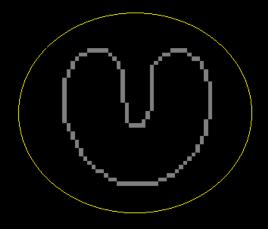
• Saha, Das, Wehrli, "An object class-uncertainty induced adaptive force and its application to a new hybrid snake," Patt Recog, 40: 2656-2671, 2007

Outline

- Brief Overview of Snake
- Basic Challenges
- Object Feature Force
- Object Class Uncertainty
- Smart Force
- Smart Snake Methods and Design
- Experimental Results

Curves in Motion

- Initialization
 - Squeezing Snake: Object contained entirely inside the region enclosed by the initial contour
 - Expanding Snake: Object entirely includes the region enclosed by the initial contour
 - Automatic
 - Expand from a seed point using balloon force
 - Converge from the boundary of image frame



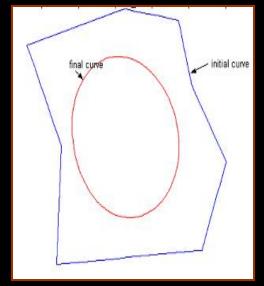


Internal Energy

The spline properties

- An elastic rubber band possessing elastic potential energy
 - Responsible for shrinking of the contour
- Behaves like a thin metal strip giving rise to bending energy
 - Bending energy is minimum for a circle.
- Total internal energy of the snake v can be defined as

$$E_{\text{int}} = \alpha(s) \left\| \frac{\partial \nu(s)}{\partial s} \right\| + \beta(s) \left\| \frac{\partial^2 \nu(s)}{\partial s^2} \right\|^2$$



Snake: Basic Formulation

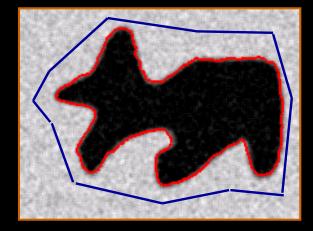
- Snake: a deformable spline v^{\dagger}
- Basic Snake Equation

 $E_{\text{snake}} = E_{\text{int}} + E_{\text{image}} + E_{\text{con}}$

- Internal Energy
 - String (elastic) Force
 - Rigidity Force

$$E_{\text{int}} = \alpha(s) \left\| \frac{\partial \nu(s)}{\partial s} \right\| + \beta(s) \left\| \frac{\partial^2 \nu(s)}{\partial s^2} \right\|^2$$

- Image Energy
 - Gradient
 - Intensity

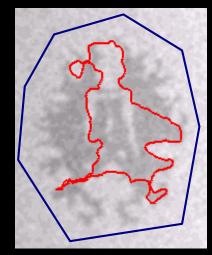


An Overlooked Territory

• Theory and algorithms to optimally fit in *a priori* object/background feature information

Attempts to overcome this limitation

- A blind balloon force⁺ to move the snake in homogeneous regions
- Failure to arrest uncontrolled snake propagation once leaked through a weak boundary zone
- Sub optimal performance near boundaries with narrow concavities



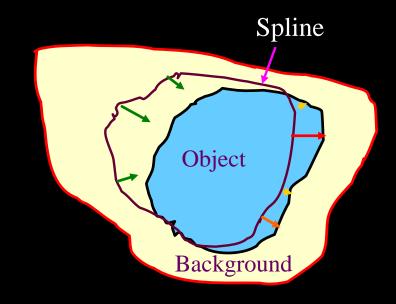
Result using balloon snake

Main Contribution

Introduction of object/background feature based
SMART FORCE into snake

Nature of smart force

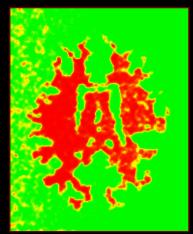
- Expanding within the object
- Compressing inside the background
- Weakens at the vicinity of the object-background interface



Design of the Smart Force

- Probably, we need...
 - Optimum object-background classification
 - Confidence level of the classification
- We have used ...
 - Object Class Uncertainty⁺ Based Smart Force

Gray-scale image



Smart force

- expanding
- contracting
- weak

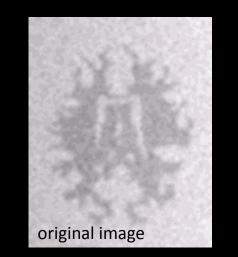
⁺Saha, Udupa, "Optimum image thresholding via class uncertainty and region homogeneity," IEEE Trans Patt Anal Mach Intell, 23: 689-706, 2001

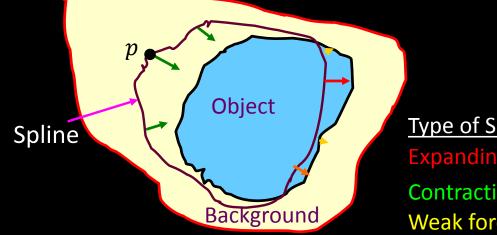
Object Class Uncertainty Induced Smart Force

 $\mathbf{\tau}_{v}(p)$: unit vector radially outward at the location p on the contour v

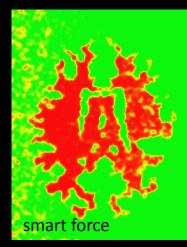
Smart force

$$F_{\text{smart},\nu}(p) = \begin{cases} 1 - h(f(p))\mathbf{\tau}_{\nu}(p), & \text{if } p \in O, \\ -1 + h(f(p))\mathbf{\tau}_{\nu}(p), & \text{otherwise.} \end{cases}$$





<u>Type of Smart Forces</u> Expanding (inside object) Contracting (inside background) Weak force (at interface)

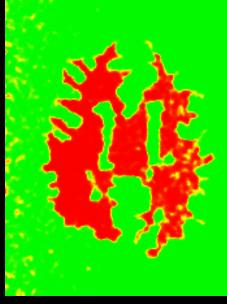


• Saha, Das, Wehrli, "An object class-uncertainty induced adaptive force and its application to a new hybrid snake," Patt Recog, 40: 2656-2671, 2007

Properties of Smart Force

• Direction adaptive

- Expands inside the object
- Compresses within background
- Resists uncontrolled post-leaking propagation
- Optimal response to the chaos in acquired signal
- Complementary with Image Gradient force
 - stronger inside homogeneous regions
 - weak near boundaries



smart force

Estimation of Uncertainty Force

- Prior Information about object and background intensity distribution acquired
 - *m*₀ : Object mean
 - m_B : Background mean
- σ_0 : Object standard deviation
- σ_B : Background standard deviation

background intensity distribution

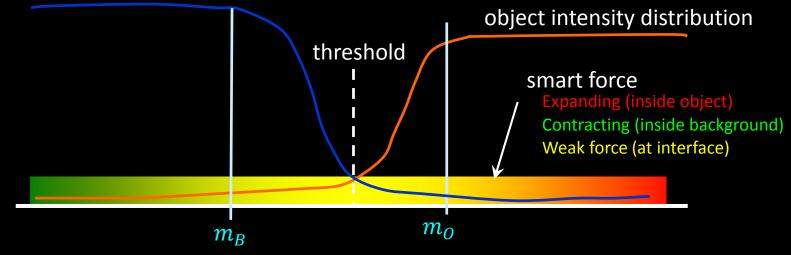
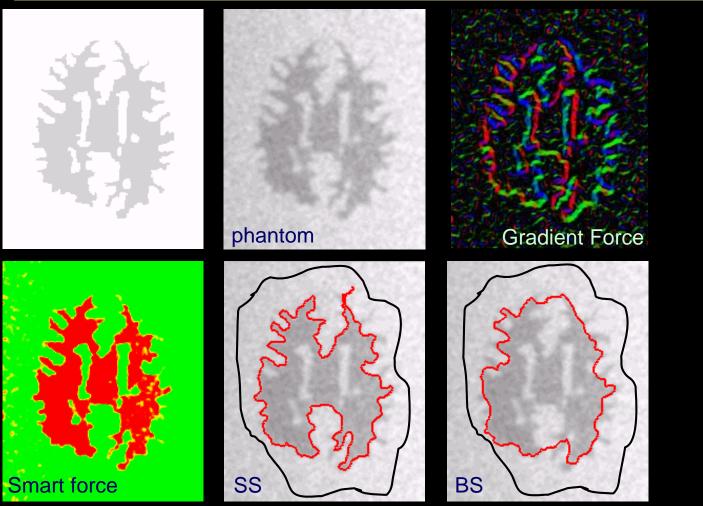


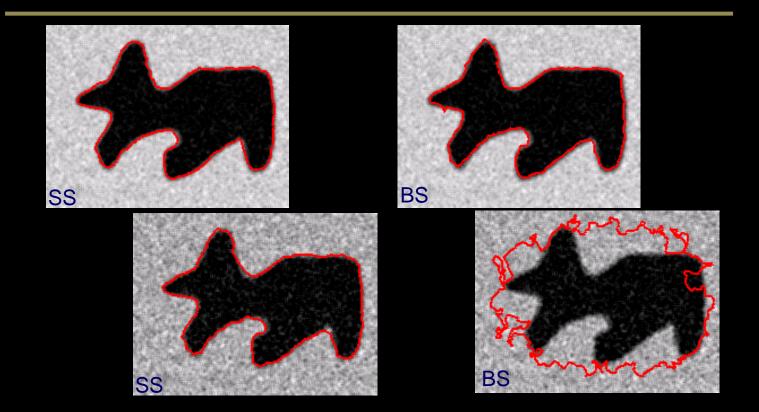
Image Force Field and Snake



Smart snake (SS)

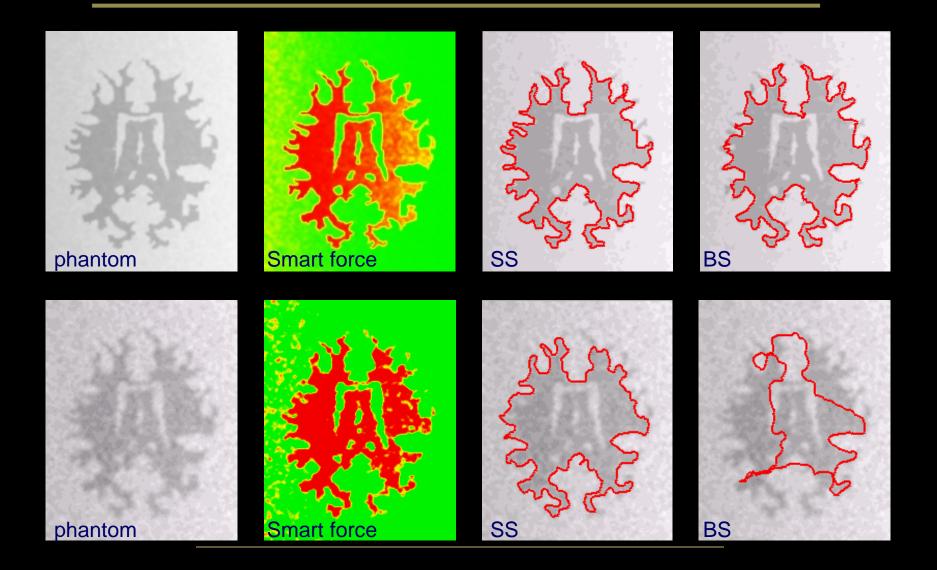
Balloon snake (BS)

Comparative Results

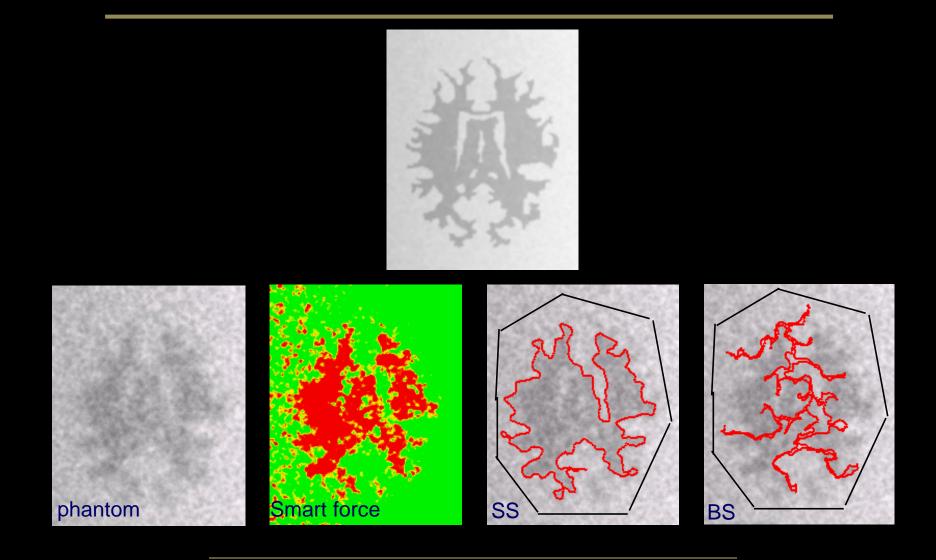


Phantom with high object-background contrast at different levels of noise and blurring

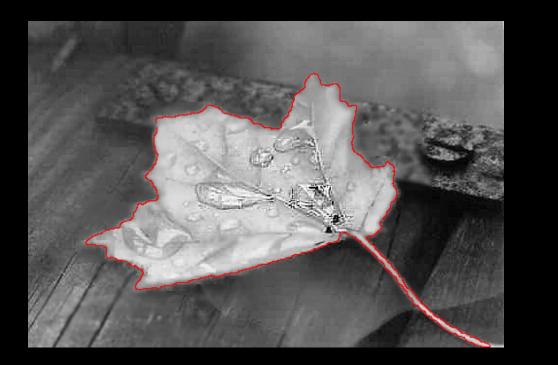
Comparative Results

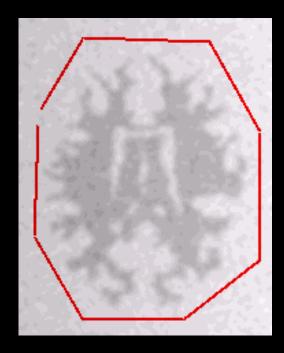


Comparative Results

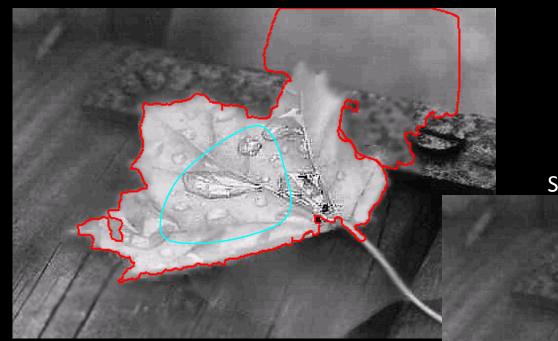


Object Class Uncertainty Induced Smart Snake



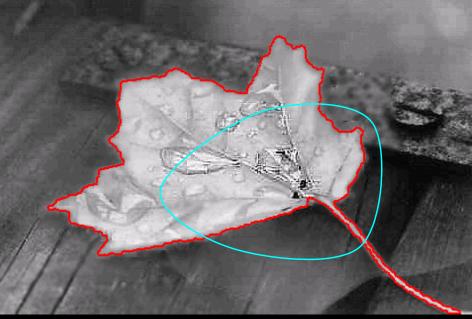


Comparison with Balloon Snake

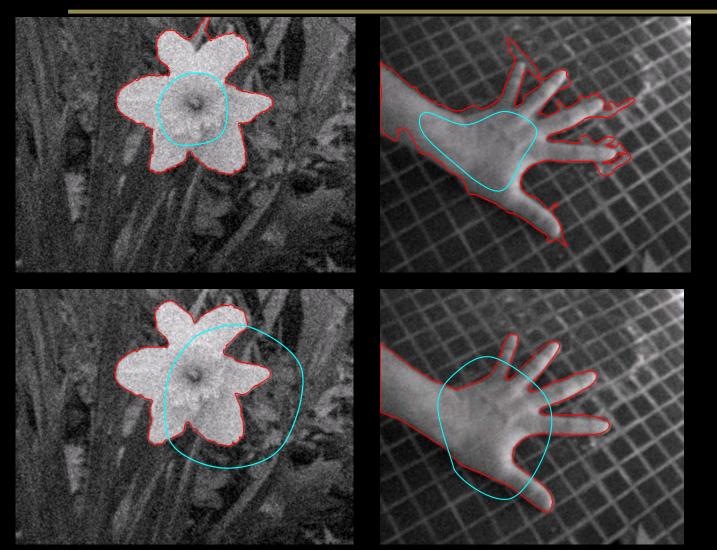


Segmentation result (red) using balloon snake

Segmentation result (red) smart snake



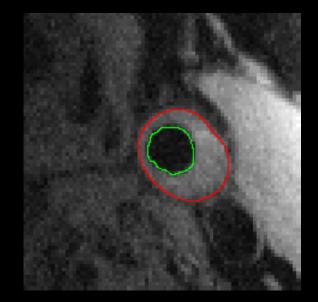
Comparison with Balloon Snake



Result (red) using balloon snake

Results (red) using smart snake

Carotid Data Segmentation using Smart Snake



Summary

- Introduced object class uncertainty theory
 - Combines information theoretic measure with image features
- A fundamental postulate is stated
 - In most real life imaging applications, under optimum classification, image elements with the maximum class uncertainty appear in the vicinity of object boundaries.
 - Supported by results of application on several real images and 250 computer generated realistic phantoms
 - Potential application in multiple image and data classification tasks

Summary (Contd.)

- Application to optimum thresholding
 - Potential application in local threshold selection
 - Results of application using both real and phantom data
- Introduced object class uncertainty based smart force into snake model
 - Direction adaptive
 - Strength adaptive to fit with the inherent chaos in signal
 - Acts in complementary fashion with image gradient information
- Preliminary results of application of class uncertainty based smart snake on several natural and medical data